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1. Reference [1] describes calculations of charge motion in an 
electromagnetic field, allowing for interaction. The basic parts of 
the calculation are: numerical integration of the equations of p a ~  
tiele motion, and numerical solution of the boundary problems for 
equations of the elliptic type. The same reference makes a compar- 
ative analysis of schemes suitable for solution of a difference analog 
of the Dirichlet problem for a rectangular region in a cylindrical 
system of coordinates, and one economical scheme is described. The 
present paper applies the method examined in [1] to computer mod- 
eling of the acceleration process in a heavy-current linear acceler- 
ator. The approximate model of the physical process is based on the 
method of "large molecules. " It involves individual description of 
the motion of "large particles" (packets of particles) in their own 
field (which is calculated numerically after appropriate averaging 
of the density) and in externaI fields (electric and magnetic), cal- 
culated with a difference analog of the boundary problem for the 
Poisson (Laplace) equation in cylindrical geometry. 

The advantage of this kind of examination lies in the fact that 
the averaged quantities are not differentiated, but integrated, which 
considerably increases the accuracy of calculation when the charges 
are grouped in a bunch and the charge density varies rapidly in space. 
A shortcoming of this kind of model is the transition to the solution 
of a number of equations-limited by the capabilities of the computer 
-describing the motion of grouped charges. The choice of the num- 
ber of such charges, modeling the actual process, is made from num- 
erical experiments. 

Similar models have been used earlier in problems of rarefied 
plasma [2-4], in calculating the influence of a space charge in an 
accelerator (reference [5]), and in investigations of klystren bunch- 
ing of a heavy-current beam with strong velocity modulation of the 
particles ['7]. 

2. We c o n s i d e r  the  m o d e l  of the a c c e l e r a t o r  to 
h a v e  the  f o r m  of a cont inuous  c y l i n d e r  of r a d i u s  R and 
l eng th  L (in the c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  0 - r - 
~- R ,  0-< z ~ L ,  0-< (fl -< 2~). The c a s e  e x a m i n e d  i s  a 
q u a s i - e l e c t r o s t a t i c  f ie ld .  Under  the  a s s u m p t i o n  of a x -  
i a l  s y m m e t r y ,  the po ten t i a l  of the  e x t e r n a l  e l e c t r i c  
f i e ld  i s  d e t e r m i n e d  f r o m  the  equa t ion  

t 0 Ou , O2u O 
r T r r ~ - r  T Oz2 _ .  ( 2 . 1 )  

H e r e  the  po ten t i a l  on the  s ide  s u r f a c e  of the  c y l i n -  
d e r  i s  g iven  by 

u ( r ,  0, t) = 0 ,  o r  OulOz~=o=O, 

(R, z, t) = h (z) cos cot + h (~) cos (cot + (~), 

u (r, L, t) = 0, o r  Ou/Otz=o = O. (2 .2)  

By i n t r o d u c i n g  f l ( z )  and fz(z) ,  we m a k e  it  p o s s i b l e  
to a s s i g n  po t en t i a l s  at  two r e s o n a t o r s  w i th  a phase  
shi f t  (ft. In the  s u b j e c t  p r o b l e m s  the  func t ions  f l (Z)  and 
f2(z) w e r e  g iven  as be ing  l i n e a r  in the  gap,  as  was  
a s s u m e d  f o r  t h i c k - w a l l e d  d r i f t  tubes .  It should  be  
noted ,  h o w e v e r ,  that  to c a r r y  out  the c a l c u l a t i o n s ,  we  
m u s t  a s s u m e  v a l u e s ,  on the  s u r f a c e  r = R,  fo r  any of 

the m e s h  func t ions  9el(Z) and 9C2(z) d e t e r m i n e d  at a 
s e r i e s  of points  in the i n t e r v a l  0 -< z -< L. Thus ,  fo r  
c o m p l e x  gaps ,  the  po ten t i a l  at  the  b o u n d a r y  can be  r e -  
m o v e d  f r o m  an e l e c t r o l y t i c  bath.  We sha l l  a s s u m e  
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that  wi th in  the c y l i n d e r  f i ( z )  and f2(z),  r e s p e c t i v e l y ,  
g e n e r a t e  po ten t i a l s  ~ l ( r ,  z) and (~2(r, z),  which  s a t i s fy  
Eq.  (2.1)  and a r e  a s s o c i a t e d  wi th  po t en t i a l s  of the le f t  
(~t cos  wt) and r i gh t  (r cos  (wt + (p)) r e s o n a t o r s .  

T h e i r  t o t a l  po t en t i a l  (~ i s  de f ined  as  

(I) =- (I) 1 cos cot -}- (I)~ cos (cot -t- (P). 

It  is  a s s u m e d  tha t  the  c y l i n d e r  i s  l o c a t e d i n  a s t e a d y  

m a g n e t i c  f i e ld  such  that  H~p = O, w h e r e  H~0 is  a c o m -  
ponent  of the m a g n e t i c  f i e l d - i n t e n s i t y  v e c t o r .  We n e -  
g l e c t  the  h i g h - f r e q u e n c y  m a g n e t i c  f ie ld  in the  a c c e l -  
e r a t i o n  of n o n r e l a t i v i s t i c  ions .  

The  e x t e r n a l  m a g n e t i c  f i e ld  i s  d e t e r m i n e d  f r o m  the 
s a m e  equa t ion  (2 .1)  as  u = H z under  the  cond i t ions  

0 ~ H ~ ( r , z )  ~=L 0, H~ (r, z) ~=0 = 0, = 

Uz(R, z)-----/a(z). (2 .3)  

It is  a s s u m e d  a l so  that  at t i m e  t = t 0 t h e r e  a r e  no 
c h a r g e s  ins ide  the  c y l i n d e r .  Then ,  beg inn ing  at  t = to, 
we a s s u m e  that  a c y l i n d r i c a l  u n i f o r m l y  c h a r g e d  b e a m  
is  app l i ed  wi th  a g iven  c u r r e n t  to the  a c c e l e r a t o r  i n -  
put. Th i s  c u r r e n t  is c a r r i e d  into the  a c c e l e r a t o r  by 
" l a r g e  p a r t i c l e s ,  " each  of wh ich  r e p r e s e n t s  n e l e -  
m e n t a r y  p a r t i c l e s  wi th  c h a r g e  e and m a s s  m ,  uni ted 
into a s i n g l e  t w o - d i m e n s i o n a l  p a r t i c l e ,  a c i r c l e  w h o s e  
c e n t e r  is  on the c y l i n d e r  ax i s .  A c h a r g e  q = ne is  un-  
i f o r m l y  d i s t r i b u t e d  o v e r  the c i r c l e .  At t i m e  t = to 
th is  p a r t i c l e  is d e s c r i b e d  by the  quan t i t i e s  r0 k, Z0k, 

~0k, ~0k ( k =  1 ,2  . . . . .  N). 
Le t  us dwel l  on the  d e t e r m i n a t i o n  of t h e s e  q u a n t i -  

t i e s .  L e t  the v e l o c i t y  of the  p a r t i c l e s  i n j ec t ed  into  the 
a c c e l e r a t o r  be  known and equal  to flz" Hav ing  s e l e c t -  
ed  a r a t h e r  s m a l l  t i m e  i n c r e m e n t  A t ,  we d e t e r m i n e  
the c h a r g e  p a s s i n g  th rough  the  le f t  end of the  c y l i n -  
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d e r .  L e t  t h i s  c h a r g e  b e  Q. G e o m e t r i c a l l y  i t  m a y  b e  

r e p r e s e n t e d  as  a c y l i n d e r  of  r a d i u s  R 0 ( the r a d i u s  of 
t he  b e a m ) ,  w i t h  h e i g h t  flzAt.  We d i v i d e  t h i s  c y l i n d e r  
i n to  N t o r o i d a l  v o l u m e s ,  c o n s i d e r i n g  t h a t  e a c h  of t he  

v o l u m e s  is  g e n e r a t e d  by  r o t a t i o n  of t he  r e c t a n g l e  w i t h  
i t s  b a s e  p a r a l l e l  to t h e  a x i s  of  t he  c y l i n d e r  and  e q u a l  
to  f lzAt,  and  by  the  s i d e  A r k ,  r i n g s  (k = 1 , 2  . . . . .  N) 
of e q u a l  a r e a  b e i n g  d e s c r i b e d  d u r i n g  r o t a t i o n  of t he  
l a t e r a l  s i d e s .  I t  is  c l e a r  t h a t  t h i s  v o l u m e  c o n t a i n s  a 
c h a r g e  q = Q/N.  
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The  c e n t e r  l i n e s  of t h e s e  t o r o i d a l  v o l u m e s  w e r e  

a s s u m e d  to  be  " l a r g e  p a r t i c l e . "  T h e r e f o r e ,  

~'ok = B o  ] /~(2k - -  l ) / 2 N ,  zo~ = ~z �9 

A s  r e g a r d s  Z0k and  r0k,  we  m u s t  pu t  

z0k = ' /2~At ,  r0~ = 0 .  

H o w e v e r ,  i t  c a n  b e  a s s u m e d  t h a t  r0k ~ 0. T h i s  e n -  
a b l e s  us  to  i n j e c t  in to  t he  a c c e l e r a t o r  a c o n v e r g e n t  o r  
a d i v e r g e n t  b e a m ,  and  a l s o  to  s i m u l a t e  the  s c a t t e r  in  
t he  t r a n s v e r s e  t h e r m a l  v e l o c i t i e s  of the  b e a m  p a r -  
t i c l e s .  If i t  i s  a s s u m e d  t h a t ,  a t  t he  m o m e n t  of i n j e c -  
t i o n ,  t he  c e n t e r  of p a r t i c l e  g r a v i t y  i s  l o c a t e d  at  the  
s e c t i o n  z = 0, we h a v e  Z0k = 0. 

M o v i n g  u n d e r  t h e  i n f l u e n c e  of t he  e x t e r n a l  {e l ec -  
t r i c  and  m a g n e t i c )  f i e l d s ,  t h e  i n t r o d u c e d  N p a r t i c l e s  
wi l l  o c c u p y  a new p o s i t i o n  in  t he  c y l i n d e r  at  t he  t i m e  
t o + At.  We no t e  t h a t  t he  p o t e n t i a l  of t h e i r  s p a c e  
c h a r g e  a t  t h i s  t i m e  s a t i s f i e s  t he  e q u a t i o n  

t o or  , o~r 4no 
-r or r ~ -  -+" ~'[z~ = - -  - ~  " " (2 .4 )  

H e r e  p i s  the  s p a c e  c h a r g e  d e n s i t y ,  and  e i s  t h e  
d i e l e c t r i c  c o n s t a n t  of the  m e d i u m .  I t  f o l lows  f r o m  the  
f o r m u l a t i o n  of the  p r o b l e m  t h a t  a t  t he  l e f t  e n d  of t he  
c y l i n d e r ,  t he  c o n d i t i o n  

or = 0 ( 2 . 5 )  

i s  s a t i s f i e d .  
S ince  t h e  l a t e r a l  s u r f a c e  (Z) of t he  c y l i n d e r  i s  c o n -  

s i d e r e d  to b e  c o n d u c t i v e  

, f= = 0 .  ( 2 . 6 )  

T h e  u se  of c o n d i t i o n  (2 .6 )  in  t he  g a p s  i s  v a l i d  on ly  
w h e n  the  s i z e  of the  gap  i s  s m a l l  in  c o m p a r i s o n  w i t h  
t he  r e m a i n i n g  r e g i o n ;  t h e r e f o r e ,  we c a n  a s s u r e ,  w i t h -  
ou t  g r e a t  e r r o r ,  t h a t  on  the  who le  l a t e r a l  s u r f a c e  of 

t he  r e g i o n  t h a t  we a r e  c o n s i d e r i n g ,  t he  p o t e n t i a l  of 

t h e  s p a c e  c h a r g e s  i s  e q u a l  to  0. 
A s  r e g a r d s  t he  r i g h t  end ,  we s e t  up t he  s o - c a l l e d  

m i r r o r  r e f l e c t a n c e  c o n d i t i o n  f o r  t he  b e a m  

O~p/Oz Iz=~ = O. (2 .7 )  

C o n d i t i o n  (2 .7 )  d o e s  not  fo l low f r o m  the  f o r m u l a -  
t i o n  of t h e  p r o b l e m ,  bu t  i t  e x e r t s  s o m e  s l i g h t  i n f l u -  
e n c e  on the  m o t i o n  of t h e  c h a r g e s ,  e v e n  at  s o m e  d i s -  
t a n c e  f r o m  the  r i g h t - h a n d  end ,  to  the  le f t  of t he  s e c t i o n  

z = z0, w h i c h  w a s  c h o s e n  f r o m  n u m e r i c a l  e x p e r i m e n t s .  
T h e  c h o i c e  of z 0 c a n  a l so  b e  m a d e  f r o m  the  c o n s i d -  
e r a t i o n  t h a t  in  a m e t a l  tube  two b u n c h e s  s e p a r a t e d  one 

f r o m  the  o t h e r  b y  a d i s t a n c e  l a r g e  in  c o m p a r i s o n  wi th  
t h e  tube  r a d i u s  v i r t u a l l y  do not  i n t e r a c t .  

I t  i s  c o n s i d e r e d  t h a t  on ly  in  t he  r e g i o n  0 ~ z --- z 0 
wi l l  t he  m o t i o n  of t he  g r o u p e d  c h a r g e s  m o d e l  t he  a c -  
t u a l  p r o c e s s .  

Solving t he  p r o b l e m  ( 2 . 4 ) - ( 2 . 7 )  f o r  t h e  t i m e  t o + At  
and  r e p e a t i n g  t he  s t a r t - u p  p r o c e s s  f o r  t he  N p a r t i c l e s  
w i t h  the  a b o v e  c o o r d i n a t e s ,  we f ind  i t  n e c e s s a r y  now 
to  d e t e r m i n e  t he  l o c a t i o n  of 2N p a r t i c l e s  (if none  e s -  
c a p e d  t h r o u g h  t h e  l a t e r a l  s u r f a c e  o r  t h e  end) ,  m o v i n g  
u n d e r  the  i n f l u e n c e  of b o t h  t he  e x t e r n a l  f i e l d  a n d  t he  
s e l f  f i e ld ,  and  t h e n  we c o m e  to t he  s o l u t i o n  of t h i s  

p r o b l e m  a t  t i m e  t o + 2At.  In a s i m i l a r  way ,  we d e t e r -  
m i n e  t he  p o s i t i o n  w i t h i n  the  c y l i n d e r  of t he  b u n c h e d  
c h a r g e s ,  w i t h  t he  f o l l o w i n g  v a r i a b l e s  : r a d i u s  r a n d  c o -  
o r d i n a t e  z ,  v e l o c i t y  w i t h  r e s p e c t  to  r and  v e l o c i t y  
wi th  r e s p e c t  to  z ,  a n d  t he  c o n s t a n t  v a l u e  of q at  t i m e  
t o § 3At . . . . . .  t o + kAt  . . . . .  

The  m o t i o n  of t h e s e  c h a r g e s  ( see  [1]) i s  d e s c r i b e d  
by  t he  r e l a t i o n s  

ou 0u r*" = - - - -  z " = - - - -  
Or ' Oz 

H I 0 z - - - - ( D + ' ~ F + I / 2 A ~ 2 ,  z = 7 ~ r A ~ .  (2 .8 )  

B e c a u s e  of t h e  t i m e  f u n c t i o n  in  t he  f o r m  (2 .2 ) ,  we 
shou ld  a n t i c i p a t e  in  t he  c a l c u l a t i o n ,  and  t h i s  i s  a c -  
t u a l l y  o b s e r v e d ,  t h a t  in  the  r e g i o n  0 ~ z -< L t h e r e  
wi l l  b e  s e t  up a r e g i m e  h a v i n g  a p e r i o d  c o i n c i d e n t  w i t h  
t h e  p e r i o d  of c h a n g e  in  t h e  e x t e r n a l  e l e c t r i c  f i e ld .  P r o -  
v i s i o n  w a s  m a d e  f o r  t he  s t o r a g e  of t h e  s t e a d y - s t a t e  
r e g i m e  a t  the  s e c t i o n  z = z 0. A t  e a c h  s t e p  of t he  p e r i o d ,  

t h e  v a l u e s  of t h e  p o t e n t i a l  a t  t he  n o d e s  of t he  g r i d  of 
t h e  s t r a i g h t  l i ne  z = z0, the  c o o r d i n a t e s  of t he  p a r -  
t i c l e s  l o c a t e d  a t  the  s e c t i o n  z = z0, o r  of t h e s e  w h i c h  
h a v e  j u s t  p a s s e d  t h i s  s e c t i o n ,  a n d  t h e i r  v e l o c i t i e s  a r e  
r e c o r d e d  in  the  m a g n e t i c  m e m o r y .  T h e s e  r e c o r d s  
cou ld  b e  u s e d  a s  i n i t i a l  c o n d i t i o n s  fo r  the  nex t  p a r t  of 
t he  p r o b l e m ,  w h e n  a p e r i o d i c  r e g i m e  i s  a s s u m e d  a t  
t he  l e f t  e n d  of t h e  c y l i n d e r .  I t  t h u s  b e c o m e s  p o s s i b l e  
to m a k e  a d e t a i l e d  c a l c u l a t i o n  and  to e n l a r g e  c o n s i d -  
e r a b l y  t he  p o s s i b i l i t y  of m o d e l i n g  p r o c e s s e s  in  an  
a c c e l e r a t o r  w i t h  a l a r g e  n u m b e r  of r e s o n a t o r s .  

3. The method of integration for the equations of motion and 
for the numerical solution of the boundary problems has been rather 
fully described in [1]. In calculating the motion of the charges in 
the accelerator, it should be taken into account that the region where 
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the mot ion  is examined  is strongly e longa ted  in  the z d i rec t ion  (R << 
<< L).In this connect ion,  in  numer ica l  determXnation of the potent ials  
at the grid nodes, the author used the "unidixect ional  pivot  method"  
that  is most economica l  here. We sha l l  describe the  essentials of the 
method,  using a Cartesian coordinate system. 

Let us examine  the system of equations 

(h~ -+ A~.) u = 0, u Ir = 9 , (3.1)  

u ~ + r i -  2u~ + ui_ri 
A..u = h~ ' 

The quant i t ies  in (3.8) charac te r ize  the rate  of ex t inc t ion  of the 

or ig ina l  error G*. Thus, for scheme (3.3),  from (3.7)  and (3.8) ,  for 

sufficiently smal l  cq we have 

tl ~" It ~ (t + ~/~z~ / uD -~ II G~ II. (3.9) 

However, in the case of scheme (3. 4), in a s imi lar  way, for 

sufficiently smal l  $, we obtain 

II G ~ I1 < (1 + V ~  ~ / b~) - n  ti a ~ I1 . (3.10) 

Ui +i - -  2uii + u i i - r  
A~u  ~ la u ( ih,  f l )  = ul i  . (3.2)  

Here F is the contour of the rectangular  region (0 -< x -< a, 0 -< 
y "< b); h and l are the steps of the rectangular  grid; i = 1, 2 . . . .  

...N~ -- 1 ; j = l , 2  . . . . .  M - -  1 ; N o h = a ,  M l = b .  

To solve system (3. I) we can  use the  two i te ra t ion  schemes 

u ~+r a u n u = u n i t :  , (3.3)  (E - -  1HO-A1 ) = /2 ( C]+l ~- i~-1), qo 

Here n is the number of i terat ions,  and u ~ is any zeroth approx - 

ima t ton  to the solution of the boundary problem (3. 1). 
Schemes (3.3) and (3.4)  with h = l were examined  in  [7] as ex-  

amples  of b lock  i terat ions.  

i uCi) u(2) u(s) 

o 
t 
2 
3 
4 
5 
6 
7 
8 
9 

10 

o 
0.095583 
0.188813 
0.277394 
0.359144 
0.432051 
0.494319 
0.544416 
0.581107 
0.603490 
0.611012 

0 
0.095766 
0.189175 
0.277926 
0.359833 
0.432880 
0.495268 
0.54546t 
0.582222 
0.604648 
0.612185 

o 
0.095765 
O. 189174 
o. 277925 
o. 359832 
0.432878 
0.495266 
O. 545459 
0.582220 
0.604646 
0.612183 

It can  be  shown that  processes (3. 3 ) - (3 .4 )  converge in the me t r i c  

L z to the  solution of (3 .1)  for any u ~ and any h and l. 
In fact, because of l inear i ty ,  for an error G n = u - u  n for 

schemes (3, 3) and (3. 4), respect ively ,  we obtain 

7 l + 1 -  1 ri 
(E  - -  V . J ~ & )  C - -  h (G~j+r + G~2r) ,  

( z  - V..h~ G ~+1 = Vs (G~+'~j + a~_~) �9 (3. ~) 

Expanding C ~ in eigenfunctions,  we have  

kp 

( k = t  . . . . .  N o - - i ;  p = l , . . ,  M - - t ) .  (3.6)  

According to (3 .5)  and (3. 6), we obtain 

kp 

Here Pkp is determined for (3.3) and (3.4), respectively, as 
follows �9 

n + l - -  " COS p~  ) n + l  
Pkp - -  ( l  -F 2l~"h'-2 S ine i/~- k0~ 

. . 1  _ ( cos k~ ~.+r 
P/~:o --  \ l  -4- 2 h"F'~ sin ~ l /o .p~)  �9 (3. 8) 

It foIlows from (3.7) and (3.8) that schemes (3.3) and (3.4) con- 
verge.  Now passing to the l i m i t  in (3.3)  and (3.4) ,  we have  lira u n = 
= u for n "~ ~,  where u is the solution of system (3. i ) ,  a difference 
analog of the Dir ichlet  problem.  

On the basis of (3.9) and (3. 10), we state that  i f  l / a  > h /b ,  the 

most  economica l  scheme wi l l  be (3.3), and i f  l / a  > h /b ,  then pre- 
ference must be g iven  to (3, 4). Thus, when h = l and a ~ b, we must 
use ver t ica l  pivot steps. A coarser grid in  the longi tudina l  direct ion 
(for a > b) wil l  only improve the convergence of scheme (3.4) .  

The conclusions regarding schemes (3. 3) and (3. 4) extend also 

to the case of a cy l indr ica l  coordinate  system, when 

- -  l l ,  h ~.< r ~ R ,  0 ~< z ...< L ,  r i : ( i  - -  x/2) h, z i = f l  , 

( 2 i  2 i - - 2  u~_l~) 
Aau  - -  - -  h-~ \ 2i - -  l ui+~i - -  2ul)  + P 

Ao.u = l ~ (u t i+t  - -  2u i j  + u q _  r) �9 

For l >- h and R << L, in this case i t  is most  expedient  to use the 

scheme 

( E  - -  1/~.l~A1) u = I h (ui]+r + u~j_ 1) - -  1/21~'f , (3.11) 

which converges to the solution of the ordinary f ive-poin t  approxi-  

mat ion  equat ion 

t 0 Ou O~u 
r -&- + i .  ( 3 . 1 2 )  7 or ~r~,.= 

As regards accuracy of ca l cu la t ion  of the potentials  at the grid 

nodes from scheme (3.11),  i t  is qui te  satisfactory, We i l lus t ra te  this 

in  the  following probtem: find the solution of system (3. 11) under 

the conditions 

- - 0 . 4 7 5 ~ r ~ 0 . 4 7 5 ,  0 ~ z ~ t ,  

u ( - -  0.475, z) = u (0.475, z) ~ s in  g z ,  

u ( r ,  0) = u ( r ,  t) ==0, h = l = 0 . 0 5 ,  I = 0  . (3.13) 

The tab le  gives values of u(~)--solutions of the problem (3. 11), 

(3. 13) at the nodes zj = j/(j = O, 1 . . . . .  M -- 1) of the straight l ine  r = 
= 0. 025. For comparison,  we present values  of u (s) obtained by the 
wel l -known longi tudinal - t ransverse  pivot  method at the same nodes, 
as wel l  as the values of u(1)--solutions of the  d i f ferent ia l  problem 

(3.12),  (3. 13), which has the form 

u = Io (~r) sin M0.475z . 

Here I0 is a 8essel function of imag ina ry  argument .  
The numer ica l  solution was obta ined by carrying out i te ra t ion  for 

n + l  maxlu~ .  - - u  v [ < 1 0  -~  

4. The basic jus t i f ica t ion for numer ica l  methods of ca lcu la t ing  
external  e l ec t romagne t i c  fields, fields of a space charge,  and for 
methods of in tegra t ing  equations of motion has been given in  [1]. Ear- 
l ier we demonstrated the possibi l i ty  of using scheme (3. 11) to ca lcu-  
l a te  potent ials  when R << L. However, in prac t ice ,  the accuracy of 
the result ing solutious depends on the ca lcu la t ion  parameters  which, 
moreover,  de te rmine  the mach ine  t i m e  expended in the ca lcula t ion .  
It is c lear  that  the  greater  the number of nodes taken in the region of 
ca lcula t ion ,  and the smal le r  the consol idat ion of the charges, the 
more accura te  the results, and the closer the model ing  to the actual  
process. But both the  number of nodes and the number of par t ic les  in  
the exper iment  are s t i l l  d ic ta ted  by the capabi l i t i es  of the computer.  
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Typical conditions for calculation of specific problems, and an 

experimental check on the accuracy in modeling the basic processes 

ate described below. 
The fields were usually calculated in the region (--h/2 _< r -< 

<- R, 0 -< z -< L) at node 781 (11X 71), including the nodes at the 

boundaries. The ratio of L to R nsually went up to 40 ; the ratio of L 
to h reached a value of six here. With these parameters about 20 sec 
was required for calculating the field on a commercial ly available 
machine when determining the potential of a space charge, when the 

zeroth approximation was assumed to be the values of ~, obtained in 
the previous step in t ime, and about a minute, if zero was taken 
as the zeroth approximation. Calculation of the self field constituted 
the main part of the t ime expended on the calculation. As far as the 
accuracy of the obtained solution is concerned, i t  was quite satisfac- 
tory. The latter was verified in analytical  solutions for the schemes 
described in [1]. On introduction of scheme (3.11) into the calcula-  

tion, a comparison was made with solved problems. Results of the 
comparison were similar to those presented in the t ab l e .  

The field determined only at node 781, on integration of the 

equations of motion, was interpolated linearly at the point having 
the coordinates of the calculated bunched particle. 

In the majority of specific variants, at least two or three nodes 
of the grid are placed along the z axis over the length of the acce l -  

erating gap. In some cases an even more detailed grid was required. 
Here the region for the calculation of the particle motion (0 -< z -<- 
-< L), contained only from three to eight accelerating periods. If this 
was not enough, the modeling of the process throughout the entire 
accelerator was reduced to the solution of two or more problems. On 
solution of the first of these at the section z = z0 (usually in the mid- 
rile of the drift tube) during one high-frequency period the steady- 

state process was stored in the magnetic memory: the coordinates and 
velocities of the particles, and also the values of the space charge 

fields at the node, z = z0. These data were used as ini t ia l  values at 
the left end in calculat ing the next section of the accelerator. Repe- 

tition of similar procedures permitted us to calculate the dynamics 
of the particles in an accelerator of any length. The time interval 
was usually defined as A~" = T/36, where T is the period of the exter- 

nal high-frequency electric field. 
The calculation accuracy for the external field and for the dy- 

namics of the particles, without allowing for the space charge, is 
illustrated in Fig. 1 which shows the increment in particle energy 
as a function of the phase of transit over the gap center. The init ial  

energy of the protons is W0 = 70 keV, the voltage at the gap is U = 
= 2.56 keV. For comparison, the dashed line shows the anaIytical 
dependence [8]. The deviation from this relation does not exceed 1~ 
for all the points. 

Figure 2 shows the dependence R = R(z), obtained in numerical 
solution of the problem of the spreading of a uniformly charged cylin- 

drical beam under the influence of a space charge in a space free of 
external fields, the phase volume of the beam being V = 0, the ini- 

t ial  beam radius R0 = 1.41 cm, the beam current I = 1 amp, the par- 

t icle energy W0 = 700 keV, the time interval A1- = (400/36) C (C is the 
speed of light in vacuum). 

At each t ime interval four grouped particles with charge q = 
= (I/4)At are introduced across the section z = 0. 

The dashed line gives the analytical  relation R = f(z) for a beam 
with the appropriate parameters ([9, 10]). Rather good agreement is 
obtained even for considerable divergence of the beam. The calcula-  
ted field at the beam surface close to the injection section coincides, 
with high accuracy, to the field of an infinite, uniformly charged cyl- 
inder of corresponding radius. 

The question of the accuracy of calculating the space-charge 
fields with the particles bunched in a cluster in a linear accelerator 
was investigated separately. 

The minimum number of particles, the maximum t ime interval, 
and the maximum length of the calculation mesh along the z axis 
must be determined for each class of problems on the basis of the 
convergence of the solutions for successive decrease in the above par- 
ameters. The class of problem is characterized by the order of mag- 
nitude of the voltage at the gap, the wavelength of the external e lec-  

tric field, the order of magnitude of the beam current strength, the 
energy of the particle, the magnitude of the external magnetic field, 

and the relationship between the longitudinal and transverse dimen- 

sions of the calculation region. Thus, for beams with a current 

strength of 0.5 to 3 amp and energy of 0.5 to 10 Mev, moving in an 
external magnetic field of up to 10 O00 Co, with a voltage at the 

gaps of up to thousands of kV, when tl{e length of the calculation re- 

gion exceeded the cylinder radius by a factor of almost 40, injection 
of four particles for each 10 ~ was quite valid. It made sense to cal- 
culate the fields in this case using 11 x 71 nodes. In confirmation of 

this, Fig. 3 shows the distribution of particles in the phase plane of 
longitudinal motion (15 = ~) for the following combinations of inter- 
vals of t ime, space, and number of particles determining the accur- 

acyoffield calculations: i(2l, 2At, N = 72), 2(l, At, N = 144), 3(0.5/, 
0.SAT, N = 288). Here a beam was injected into an accelerator with an 

aperture radius R = 2 era,the beam parameters being: init ial  radius 
R0 = 1.5 cm, I = 3 amp, and injection energy W0 = 0.7MeV. The 

wavelength of the external electr ic fieid was X = 40Oem, the synchro- 
nous phase was co = -30 ~ The length h of the mesh along the r axis 

was chosen to be 2 /9 .5  em. The intensity of the magnetic field at 
the boundary was Hz(R, z) = 13 000 Oe. 

In condition (2.2), we assumed $2 = 0. The function fKR, z) 
varied linearly between the values: (% 0), (6.07, 0), (10.11,202). 

(22.78, 202), (27.18, 422), (40.94, 422), (40.94, 422), (45.71, 660.5), 
(60.58, 660.5), (65.73, 918), (81.73, 918), (87.29, i194.5), (104.41, 
1194.5) (110.32, 1490), (128.63, 1490), (134.93, 1805), (280, 1805)o 
The first number in the parentheses is the z coordinate, and the second 
number is the corresponding value of fl(R, z). A number of variants were 
calculated withthe intervals of time, distance, and the number of par- 

ticles injected in one high-frequency period assuming various values. 

The results shown in Fig. 3 correspond to the steady-state regime. 

The admission of 150-200 particles in one high-frequency per- 
iod was used in a problem with continuous beam injection. The eal-  

eniation was continued in this ease until the instant of entry into a 
steady regime which was determined mainly by the particles not in- 

volved in the accelerator regime. However, in the majority of ac- 

tuai installations, such particles, in the course of several periods of 
acceleration, can either lose their transverse stability and settle out 

to the wails of the drift tubes (for example, in accelerators with hard 
focusing), or are filtered by artificial methods. In such equipment 
the beam is an array of clusters which are rather widely spaced, and do 
not interact. In modeling this kind of beam, i t  is sufficient to effect 
injection during only a single high-frequency period, and then to use 
all of the particles determined by the program memory (in our ease, 
2040). In this way it  is possible to effect rather good modeling of 
some complex physical processes in the beam (thermal scatter of 
particle velocity, etc.) .  

The conducted investigations of this program indicate that it 
can be used for calculation experiments. 

With reference to the matter of acceleration, the program can 
be very useful, not only in the design of specific equipment (thebun- 
chef, the ini t ial  part of the heavy-current accelerator, and the kly- 

stron tube), but also for improvement of some of the hypotheses of 
accelerator theory, primarily associated with a space charge, and the 
need to depart from a one-frequency theory. 

In conclusion the authors wish to express their gratitude to N. N. 
Yanenko and V. A. Teplyakov for useful discussions and for formula- 
ting the problem, to B. K. Shembel and A. P. Fedotov for their con- 
tinuons interest in this work, to A. A. Kosorukova for her participa- 
tion in writing the basic program and in conducting the calculations 
and to R. T. Dyldina, who wrote the data processing program. A 
large part was played in the experimental investigation of the pro- 
gram by G. M. Anisimov. 

RE FERENCES 

1. V. A.  E n a l ' s k i i ,  " T h e  m o t i o n  of p a r t i c l e s  i n  a n  

e l e c t r o m a g n e t i c  f i e l d , "  T r .  M a t e m .  i n - t a  A N  SSSR,  

v o l .  74,  1 9 6 6 .  



20 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI 

2. O. Buneman,  "Diss ipa t ionof  c u r r e n t s  in ionized 
m e d i a , ' P h y s , R e v . ,  vol. 115, no. 3, p. 503, 1959. 

3. J. Dawson, "Invest igat ion of the doub les t ream 
instabil i ty,"  Internat .  atomic energy agency. Salzburg, 
1961. 

4. V. A. Enal ' sk i  and V. S. Imshennik,  "A non-  
l inear  problem re la t ing  to the col l i s ion of clouds of 
r a re f i ed  p lasma,"  PMTF [Journal  Of Applied Me-  
chanics And Technica l  Physics] ,  no. 1, 1965. 

5. S. P. Lomnev,  "Calculat ion of the phase t r a -  
j ec tor ies  of charged pa r t i c l e s ,  involving Coulomb 
in te rac t ion  in the buncher  of a l i nea r  e lec t ron  acce l -  
e ra tor ,  'r Dokl. AN SSSR, vol. 135, no. 4, 1960. 

6. S. E. Welber,  "Bal l is t ic  ana lys i s  of a two- 
cavity f ini te  beam klys t ron ,  " T ransac t ion  Inst.  Radio 
Engineer ing  N.Y.E.D., 598, 1958. 

7. V. K. Saul 'ev ,  In tegra t ion  of Parabol ic  Type 
Equations by the Mesh Method [in Russ ian] ,  F i z m a t -  
giz, 1960. 

8. D. V. Karetnikov,  I. N. Slivkov, V. A. Teplya-  
kov, A. P. Fedotov, and B. K. Shembel, Linear  Ion 
Acce le ra to rs  [in Russian],  Gosatomizdat,  1962. 

9. D. R. P i t s ,  Theory a n d D e s i g n  of Elect ron 
Beams [in Russian]  Izd. Sovetskoe radio,  1956. 

10. M. D. Gabovich, "The effect of a space charge 
on the propagat ion of in tense  beams  of charged p a r -  

25 October 1966 Chelyabinsk 


