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1. Reference [1] describes calculations of charge motion in an
electromagnetic field, allowing for interaction. The basic parts of
the calculation are: numerical integration of the equations of par-
ticle motion, and numerical solution of the boundary problems for
equations of the elliptic type. The same reference makes a compar-
ative analysis of schemes suitable for solution of a difference analog
of the Dirichlet problem for a rectangular region in a cylindrical
system of coordinates, and one economical scheme is described. The
present paper applies the method examined in [1] to computer mod-
eling of the acceleration process in a heavy-current linear acceler-
ator. The approximate model of the physical process is based on the
method of "large molecules. " It involves individual description of
the motion of "large particles™ (packets of particles) in their own
field (which is calculated numerically after appropriate averaging
of the density) and in external fields (electric and magnetic), cal-
culated with a difference analog of the boundary problem for the
Poisson (Laplace) equation in cylindrical geometry.

The advantage of this kind of examination lies in the fact that
the averaged quantities are not differentiated, but integrated, which
considerably increases the accuracy of calculation when the charges
are grouped in a bunch and the charge density varies rapidly in space.
A shortcoming of this kind of model is the transition to the solution
of a number of equations-limited by the capabilities of the computer
-describing the motion of grouped charges. The choice of the num-
ber of such charges, modeling the actual process, is made from num-
erical experiments.

Similar models have been used earlier in problems of rarefied
plasma [2-4], in calculating the influence of a space charge in an
accelerator (reference [5]), and in investigations of klystren bunch-
ing of a heavy-current beam with strong velocity modulation of the
particles [7].

2. We consider the model of the accelerator to
have the form of a continuous cylinder of radius R and
length L (in the cylindrical coordinate system 0 = r =
=R, 0=z=L, 0= ¢ = 2r). The case examined is a
quasi-electrostatic field. Under the assumption of ax-
ial symmetry, the potential of the external electric
field is determined from the equation

18 ou  du
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Here the potential on the side surface of the cylin-
der is given by

u(r, 0, ) =0, or ouldz,—, =20,
W (R, 7 1) =, () cos ot + Ty (2) 005 (ot +),
u(r, L, t) =0, or dud,=0. 2.2)

By introducing fi(z) and f,(z), we make it possible
to assign potentials at two resonators with a phase
shift ¢. In the subject problems the functions f{(z) and
f4(z) were given as being linear in the gap, as was
assumed for thick-walled drift tubes. It should be -
noted, however, that to carry out the calculations, we
must assume values, on the surface r = R, for any of

the mesh functions f;(z) and fy(z) determined at a
series of points in the interval 0 = z = L. Thus, for
complex gaps, the potential at the boundary can be re~
moved from an electrolytic bath, We shall assume
plu’
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that within the eylinder f(z) and f5(z), respectively,
generate potentials ®,(r,z) and &,(r,z), which satisfy
Eqg. (2.1) and are associated with potentials of the left
(®, cos wt) and right ($; cos (wt+ ¢)) resonators,
Their total potential ®is defined as

@ = @, cos ot + D, cos (0t + @) .

It is assumed that the cylinder is locatedin a steady
magnetic field such that Hy = 0, where Hyp is a com-
ponent of the magnetic field-intensity vector. We ne-
glect the high-frequency magnetic field in the accel -
eration of nonrelativistic ions.

The external magnetic field is determined from the
same equation (2.1) as u = H, under the conditions

ZH(rA|_ =0, 2H.(r5)| =0,
HZ(R, z)=f3(z). (2.3)

It is assumed also that at time t = t; there are no
charges inside the cylinder. Then, beginning att =t,,
we assume that a cylindrical uniformly charged beam
is applied with a given current to the accelerator in-
put. This current is carried into the accelerator by
Marge particles, " each of which represents n ele-
mentary particles with charge e and mass m, united
into a single two-dimensional particle, a circle whose
center is on the cylinder axis. A charge q = pe is un-
iformly distributed over the circle. At time t = t,
this particle is described by the quantities rgk, zgk,
Tk, Zgk k=1,2,..., N).

Let us dwell on the determination of these quanti-
ties. Let the velocity of the particles injected into the
accelerator be known and equal to 8,. Having select-
ed a rather small time increment At , we determine
the charge passing through the left end of the cylin-
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der. Let this charge be Q. Geometrically it may be
represented as a cylinder of radius Ry (the radius of
the beam), with height 8,At. We divide this cylinder
into N toroidal volumes, considering that each of the
volumes is generated by rotation of the rectangle with
its base parallel to the axis of the cylinder and equal
to BzAt, and by the side Ark, rings (k=1,2,...,N)
of equal area being described during rotation of the
lateral sides. It is clear that this volume contains a
charge q = Q/N. ’
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The center lines of these toroidal volumes were
assumed to be "large particle." Therefore,

rox = Ry YV @k — 1)/ 2N,

Zox = Bz .
As regards zyk and Iyk, we must put

Zor = 1/oB.At, Fr=0.

However, it can be assumed that rgk # 0. This en-
ables us to inject into the accelerator a convergent or
a divergent beam, and also to simulate the scatter in
the transverse thermal velocities of the beam par-
ticles. If it is assumed that, at the moment of injec-
tion, the center of particle gravity is located at the
section z = 0, we have z; = 0.

Moving under the influence of the external (elec-
tric and magnetic) fields, the introduced N particles
will occupy a new position in the cylinder at the time
ty + At. We note that the potential of their space
charge at this time satisfies the equation

%(%,g_‘rp_ﬂ’ﬂ’:_é’.‘e_ 2.4)

Here p is the space charge density, and ¢ is the
dielectric constant of the medium. It follows from the
formulation of the problem that at the left end of the
cylinder, the condition

0/ 02|imo =0 2.5)

is satisfied.
Since the lateral surface (Z) of the cylinder is con-
sidered to be conductive

Plp=0. 2.86)

The use of condition (2. 6) in the gaps is valid only
when the size of the gap is small in comparison with
the remaining region; therefore, we can assure, with-
out great error, that on the whole lateral surface of

the region that we are considering, the potential of
the space charges is equal to 0.

As regards the right end, we set up the so-called
mirror reflectance condition for the beam

dp/oz|,_, =0. 2.7)

Condition (2. 7) does not follow from the formula-
tion of the problem, but it exerts some slight influ-
ence on the motion of the charges, even at some dis-
tancefrom the right-hand end, to the left of the section
z = 73, which was chosen from numerical experiments.
The choice of z; can also be made from the consid-
eration that in a metal tube two bunches separated one
from the other by a distance large in comparison with
the tube radius virtually do not interact.

It is considered that only in the region 0 =z = gz,
will the motion of the grouped charges model the ac-
tual process.

Solving the problem (2. 4)—(2.7) for the time t; + At
and repeating the start-up process for the N particles
with the above coordinates, we find it necessary now
to determine the location of 2N particles (if none es~
caped through the lateral surface or the end), moving
under the influence of both the external field and the
self field, and then we come to the solution of this
problem at time ty + 2At. In a similar way, we deter-
mine the position within the cylinder of the bunched
charges, with the following variables:radius r and co-
ordinate z, velocity with respect to r and velocity
with respect to z, and the constant value of q at time
tg + 3AL,...., tp+ kat, . ...

The motion of these charges (see [1]) is described
by the relations

— o i
==& T
- : 142 14
=04+ 41/, 4.2 H‘_TETA“’- (2.8)

Because of the time function in the form (2.2), we
should anticipate in the calculation, and this is ac-
tually observed, that in the region 0 = z = L there
will be set up a regime having a period coincident with
the period of change in the external electric field. Pro-
vision was made for the storage of the steady-state
regime at the section z =z,. Afeach step of the period,
the values of the potential at the nodes of the grid of
the straight line z = z;, the coordinates of the par-
ticles located at the section z = z;, or of these which
have just passed this section, and their velocities are
recorded in the magnetic memory. These records
could be used as initial conditions for the next part of
the problem, when a periodic regime is assumed at
the left end of the cylinder. It thus becomes possible
to make a detailed calculation and to enlarge consid-
erably the possibility of modeling processes in an
accelerator with a large number of resonators.

3. The method of integration for the equations of motion and
for the numerical solution of the boundary problems has been rather
fully described in [1]. In calculating the motion of the charges in
the accelerator, it should be taken into account that the region where
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the motion is examined is strongly elongated in the z direction (R «
« 1).In this connection, in numerical determination of the potentials
at the grid nodes, the author used the "unidirectional pivot method”
that is most economical here. We shall describe the essentials of the
method, using a Cartesian coordinate system,

Let us examine the system of equations

(A4 Ay u=0, ulp=9, 3.1
_ Mgy 2y
A= ——hz——z—,
wy g — 2ug; 4 g
Ay = L—z;]*” , o ulih, )y =y . (3.2)

Here I is the contour of the rectangular region (0 = x =4, 0=
=y=b);hand! are the steps of the rectangular grid; i =1, 2,...
.-.Na ~1;j=1,2,.0., M= 1;Nogh =a, MZ=h.

To solve system (3. 1) we can use the two iteration schemes

(B — A €™ =1 (u Ty +u™), Wlp=¢, (3.3)

— ah?Ag) u™1 =1 (u;,7; + 2 55, =9, (3.4
Here n is the number of iterations, and u’ is any zeroth approx -
imation to the solution of the boundary problem (3. 1).
schemes (3. 3) and (3.4) with h = I were examined in 7] as ex~
amples of block iterations.

(D u(2) 4+{3)

-

0 0 0 0
1 0.095583 0.095766 0.095765
2 0.188813 0.189175 0.180174
3 0,2773% 0.277926 0.277925
4 0.359144 0.359833 0.359832
5 0.432051 0.432880 0.432878
6 0.494319 0.495268 0.495266
7 0.544416 0.545461 0.545459
8 0.581107 0.582222 0.582220
9 0.603490 0.604848 0.604646
10 0.611012 0.612185 0.612183

It can be shown that processes (3. 8)-(3.4) converge in the metric
L, to the solution of (3.1) for any o’ and any h and I,

In fact, because of linearity, for an error G" =u - uR for
schemes (3. 3) and (3. 4), respectively, we obtain

— Yol2Ay) O™ =13 (G504 + 657,
(B — Yah?he) ™ =113 (G35 + G, Jp - (8.9)
Expanding C° in eigenfunctions, we have

Sy M o ED _ in kin sin /B, g T wl
Go_%akpq » ¢;;7 = sinkio sin pB, o= BZT)

(k=1,..., No—1; p=1,..., M—1), (3.6)

According to (3.5) and (3. 6), we obtain

Gl — Z o ;Hakpq Ga.7

Here pkp is determined for (3. 3) and (3. 4), respectively, as
follows:

a4l cos ppB ¥l
Pip —(1—i—212“35in21/2ka ’

( cos ko )'rH-l (3.8)

n —— el S—
Pkp* 1 4 2p2 2 sin21/opR
1t follows from (3.7) and (3. 8) that schemes (3. 3} and (3. 4) con-
verge. Now passing to the limit in (3, 3) and (3. 4), we have lim uf =
=y for n=> », where u is the solution of system (3.1), a difference
analog of the Dirichlet problem.,

The quantities in (3. 8) characterize the rate of extinction of the
original error G°. Thus, for scheme (3. 3), from (3. 7) and (3, 8), for
sufficiently small o, we have

e A e S R Tad (3.9

However, in the case of scheme (3, 4), in a similar way, for
sufficiently small B, we obtain

167U + Yo [ BTG - (3.10)

On the basis of (3.9) and (3. 10), we state that if [/a > /b, the
most economical scheme will be (3.3), and if [ /a > h/b, then pre-
ference must be given ro (3,4)., Thus, whenh =1and a » b, we niust
use vertical pivot steps. A coarser grid in the longitudinal direction
(for @ > b) will only improve the convergence of scheme (3. 4).

The conclusions regarding schemes (3. 3) and (3, 4) extend also
to the case of a cylindrical coordinate system, when

—YhLr KR, 0<aSL, r=({E—h g=]l,

2i 2i—2
A=A (”m——T gy — 2wt ul—M)
Aou =172 (u”_‘_1 i]' - uij—l) .

Forl= h and R < L, in this case it is most expedient to use the
scheme

(B —Yal?As) u =3 (usjyq + w3y 4) —hIf , (3.11)

which converges to the solution of the ordinary five-point approxi-
mation equation

1.8 du ’u
Tt e T .12)

As regards accuracy of calculation of the potentials at the grid
nodes from scheme (8. 11), it is quite satisfactory. We illustrate this
in the following problem: find the solution of system (3, 11) under
the conditions

— 0475 < r <0475, 021,

u (— 0.475, z) — u (0.475, z) = sin @z,

|

w(r, 0 =u(r 1) =0, h=1=005 f=0. (3.13)

The table gives values of u(d —solutions of the problem (3.11),
(3, 13) at the nodes zj = i =0,1,..., M= 1) of the straight line r =
=0.025, For companson we present values of u %) obtained by the
well-known longitudinal-transverse pivot method at the same nodes,
as well as the values of u(9=solutions of the differential problem
(3.12), (8.13), which has the form

u = I (rr) sin 70/0.475z .

Here Iy is a Bessel function of imaginary argument,
The numerical solution was obtained by carrying out iteration for

max gt —ul] <1078

4, The basic justification for aumerical methods of calculating
external electromagnetic fields, fields of a space charge, and for
methods of integrating equations of motion has been given in [11. Ear~
lier we demonstrated the possibility of using scheme (8. 11) to calcu-
late potentials when R <« L. However, in practice, the accuracy of
the resulting solutions depends on the calculation pararnefers which,
moreover, determine the machine time expended in the calculation,
It is clear that the greater the number of nodes raken in the region of
calculation, and the smaller the consolidation of the charges, the
more accurate the results, and the closer the modeling to the actual
process. But both the number of nodes and the number of particles in
the experiment are still dictated by the capabilities of the computer.
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Typical conditions for calculation of specific problems, and an
experimental check on the aceuracy in modeling the basic processes
are described below,

The fields were usually calculated in the region (=h/2 < r =
=R,0 =z =1)at node 781 (11X 71), including the nodes at the
boundaries. The ratio of L to R usually went up to 40; the ratio of I
to h reached a value of six here. With these parameters about 20 sec
was required for calculating the field on a commercially available
machine when determining the potential of a space charge, when the
zeroth approximation was assumed to be the values of ¥, obtained in
the previous step in time, and about a minute, if zero was taken
as the zeroth approximation, Calculation of the self field constituted
the main part of the time expended on the calculation. As far as the
accuracy of the obtained solution is concerned, it was quite satisfac-
tory. The latter was verified in analytical solutions for the schemes
described in [1], On introduction of scheme (3. 11) into the calcula~
tion, a comparison was made with solved problems. Results of the
comparison were similar to those presented in the table .

The field determined only at node 781, on integration of the
equations of motion, was interpolated linearly at the point having
the coordinates of the calculated bunched particle.

In the majority of specific variants, at least two or three nodes
of the grid are placed along the z axis over the length of the accel-
erating gap. In some cases an even more detailed grid was required.
Here the region for the calculation of the particle motion (0 = z =
= L), contained only from three to eight accelerating periods, If this
was not enough, the modeling of the process throughout the entire
accelerator was reduced to the solution of two or more problems. On
solution of the first of these at the section z = zq (usually in the mid-
dle of the drift tube) during one high-frequency period the steady-
state process was stored in the magnetic memory: the coordinates and
velocities of the particles, and also the values of the space charge
fields at the node, z =zg. These data were used as initial values at
the left end in calculating the next section of the accelerator. Repe-
tition of similar procedures permitted us to calculate the dynamics
of the particles in an accelerator of any length. The time interval
was usually defined as AT = T/36, where T is the period of the exter-
nal high-frequency electric field.

The calculation accuracy for the external field and for the dy-
namics of the particles, without allowing for the space charge, is
illustrated in Fig, 1 which shows the increment in particle energy
as a function of the phase of transit over the gap center. The initial
energy of the protons is W = 70 keV, the voltage at the gapis U=
=2.56 keV. For comparison, the dashed line shows the analytical
dependence [8]. The deviation from this relation does not exceed 1%
for all the points.

Figure 2 shows the dependence R = R(z), obtained in numerical
solution of the problem of the spreading of a uniformly charged cylin~
drical beam under the influence of a space charge in a space free of
external fields, the phase volume of the beam being V = 0, the ini-
tial beam radius Rq =1. 41 cm, the beam curmrent I = 1 amp, the par-
ticle energy Wo = 700 keV, thetime interval At = (400/36) G (C is the
speed of light in vacuum).

At each time interval four grouped particles with charge q =
= (I/4)At are introduced across the section z = 0.

The dashed line gives the analytical relation R = f(z) for a beam
with the appropriate parameters ([9, 10]). Rather good agreement is
obtained even for considerable divergence of the beam, The calcula-~
ted field at the beam surface close to the injection section coincides,
with high accuracy, to the field of an infinite, uniformly charged cyl-
inder of corresponding radius,

The question of the accuracy of calculating the space-charge
fields with the particles bunched in a cluster in a linear accelerator
was investigated separately.

The minimum number of particles, the maximum time interval,
and the maximum length of the calculation mesh along the z axis
must be determined for each class of problems on the basis of the
convergence of the solutions for successive decrease in the above par-
ameters. The class of problem is characterized by the order of mag-
nitude of the voltage at the gap, the wavelength of the external elec-

tric field, the order of magnitude of the beam cwrrent stizngth, the
energy of the particle, the magnitude of the external magnetic field,
and the relationship between the longitudinal and transverse dimen-
sions of the calculation region, Thus, for beams with a current
strength of 0.5 to 3 amp and energy of 0.5 to 10 Mev, moving in an
external magnetic field of up to 10 000 Oe, with a voltage at the
gaps of up to thousands of kV, when the length of the calculation re-
gion exceeded the cylinder radius by a factor of almost 40, injection
of four particles for each 10° was quite valid, It made sense to cal-
culate the fields in this case using 11 X 71 nodes. Inconfirmation of
this, Fig. 3 shows the distribution of particles in the phase plane of
longitudinal motion (B = ¢) for the following combinations of inter-
vals of time, space, and number of particles determining the accur-
acy of field calculations: 1(21, 2471, N = 72), 2(1, Ar, N = 144), 3(0.5,
0.5AT, N = 288), Here a beam wasinjected into anaccelerator with an
aperture radius R = 2 cm, the beam parameters being: initial radius
Rp=1.5cm, I=23 amp, and injection energy Wy = 0.7MeV. The
wavelength of the external electric field was X = 400cm, the synchro-
nous phase was ¢ ==~30°, The length h of the mesh along the 1 axis
was chogen to be 2/9. 5 em. The intensity of the magnetic field at
the boundary was Hz(R, z) = 13 000 Oe,

In condition (2. 2), we assumed f, = 0. The function f (R, z)
varied linearly between the values: (0, 0), (6.07,0), (10,11,202),
(22.78, 202), (217.18, 422), (40.94, 422), (40,94, 422), (45.71, 660.5),
(60.58, 660.5), (85.73, 918), (81,73, 918), (87.29, 1194.5), (104.41,
1194.5) (110,32, 1490), (128.63, 1490), (134.93, 1805), (280, 1805).
Thefirst number in the parenthesesis the z coordinate, and the second
number isthe corresponding value of fi(R, z). Anumber of variants were
calculated withthe intervals of time, distance, and the number of par-
ticles injected in one high-frequency period assuming various values.
The results shown in Fig. 3 correspond to the steady-state regime.

The admission of 150~200 particles in one high-frequency per-
iod was used in a problem with continuous beam injection. The cal-
culation was continued in this case until the instant of entry into a
steady regime which was determined mainly by the particles not in-
volved in the accelerator regime. However, in the majority of ac-
tual installations, such particles, in the course of several periods of
acceleration, can either lose their transverse stability and settle out
to the walls of the drift tubes (for example, in accelerators with hard
focusing), or are filtered by artificial methods. In such equipment
the beamis an array of clusters which are rather widely spaced, and do
not interact. In modeling this kind of beam, it is sufficient to effect
injection during only a single high-frequency period, and then to use
all of the particles determined by the program memory (in our case,
2040). In this way it is possible to effect rather good modeling of
some complex physical processes in the beam (thermal scatter of
paiticle velocity, etc.).

The conducted investigations of this program indicate that it
can be used for calculation experiments,

With reference to the matter of acceleration, the program can
be very useful, not only in the design of specific equipment (the bun-
cher, the initial part of the heavy-cuirent accelerator, and the kly-
stron tube), but also for improvement of some of the hypotheses of
accelerator theory, primarily associated with a space charge, and the
need to depart from a one-frequency theory.

In conclusion the authors wish to express their gratiiude to N. N.
Yanenko and V. A. Teplyakov for useful discussions and for formula-
ting the problem, to B. K. Shembel and A. P. Fedotov for their con-
tinuous interest in this work, to A, A, Kosorukova for her participa-
tion in writing the basic program and in conducting the calculations
and to R, T. Dyldina, who wrote the data processing program. A
large part was played in the experimental investigation of the pro-
gram by G. M. Anisimov.
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